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Sound generation by a two-dimensional circular
cylinder in a uniform flow
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(Received 9 October 2000 and in revised form 25 June 2002)

The sound generated by a circular cylinder in a flow at low Mach numbers is
investigated by direct solution of the two-dimensional unsteady compressible Navier–
Stokes equations. Results show that sound pressure waves are generated primarily
by vortex shedding from the cylinder surface into its wake. When a vortex is shed
from one side of the cylinder, a negative pressure pulse is generated from that side
whereas a positive pressure pulse is generated from the other side; alternate vortex
shedding from the upper and lower sides of the cylinder produces negative and
positive pulses alternately and thus produces sound pressure waves on both sides.
The dipolar nature of the generated sound is confirmed; lift dipole dominates the
sound field. The Doppler effect is shown to play an important role at finite Mach
numbers. The direct solutions are also compared with the solutions obtained by
Curle’s acoustic analogy. The results show that Curle’s solution describes well not
only the generation mechanism of the sound but also the propagation process if we
take the Doppler effect into consideration.

1. Introduction
Since the work of Strouhal (1878) on aeolian tones, the flow around a circular

cylinder has been one of the major topics in fluid mechanics. The flow contains
fundamentally important fluid mechanics problems, such as forces acting on a body
(lift, drag), transition to turbulence, aerodynamic noise, etc. A number of studies of
the flow around a circular cylinder have been made experimentally, theoretically and
computationally. For recent review articles, readers are referred to Oertel (1990) and
Williamson (1996), among others.

The sound generated by the flow around a circular cylinder has also been studied by
many investigators. Strouhal (1878) experimentally found that the frequency f of the
sound radiated from a cylinder of diameter D is related to the velocity U∞ of a uniform
flow as fD/U∞ = const. The constant is now known as the Strouhal number, St, and
is 0.20–0.22 for the Reynolds number range 300 6 Re 6 104. Rayleigh (1896) recog-
nized that the production of the sound is connected with the instability of the vortex
sheets in the cylinder wake (Kármán vortex street). It is now known that the fre-
quency f of the sound is the same as the shedding frequency of vortices from the
cylinder into its wake (Gerrard 1955).

Since the pioneering paper of Lighthill (1952), most theoretical works on sound
have used an acoustic analogy. For comprehensive reviews, readers are referred to
Ffowcs Williams (1969, 1977, 1996). The sound radiated from a cylinder has also
been studied using an acoustic analogy (Curle 1955; Phillips 1956; Etkin, Korbacher
& Keefe 1957). Curle (1955) extended Lighthill’s acoustic analogy to include the



286 O. Inoue and N. Hatakeyama

influence of solid boundaries on the sound field, showing that boundary terms could
provide effective mass and momentum injection into the flow, acoustically equivalent
to monopole and dipole sources of fundamentally greater acoustic efficiency than
Lighthill’s volume quadrupoles. Curle predicted that at the low speeds at which
a Kármán vortex street is obtained the sound is not generated principally by the
quadrupoles but that dipole sound dominates the sound field. Curle also predicted
that the sound associated with the drag force has double the frequency of vortex
shedding while that associated with the lift force has the same frequency.

Based on the Curle’s acoustic analogy, Phillips (1956) calculated the fluctuations
in lift and drag upon a circular cylinder at Reynolds numbers between 40 and 160,
and found that the fluctuations in lift per unit length are much greater than the
fluctuations in drag, indicating the directional distribution of sound intensity. Etkin
et al. (1957) obtained a similar result to those of Curle and Phillips.

Gerrard (1955) experimentally found that the sound field is a dipole field with the
direction of the dipole at right angles to the flow direction, in agreement with Curle
(1955), Phillips (1956) and Etkin et al. (1957).

Work in the field of computational aeroacoustics (CAA) can be categorized into
three groups. The first group makes use of an acoustic analogy. The acoustic analogies
proposed by Lighthill and Curle relate sound exactly to integrals of surface and
volume source terms. Therefore, once the source terms are known, the sound field is
calculated by using the acoustic analogy. In the analyses of the first group, numerical
simulations are separated into two parts: the near-field aerodynamic part and the
far-field acoustic part. First, in the aerodynamic part, near-field flow structures are
simulated by using computational fluid dynamics (CFD) techniques. Incompressible
Navier–Stokes simulations are often used for low-Mach-number flows. Then, in the
acoustic part, the far-field sound is calculated from an acoustic analogy. The source
terms are evaluated using the near-field flow quantities. This method, often called the
hybrid method, saves computational time as well as memory storage compared with
direct numerical simulations (DNS), because the flow in the far field is assumed to
be stationary or uniform and thus not solved numerically (Hardin & Lamkin 1984;
Mankbadi, Hayder & Povinelli 1994; Wang, Lele & Moin 1996(a, b); Cox, Brentner
& Rumsey 1998).

Wang et al. (1996a) studied sound generated by vortex shedding in a two-
dimensional, low-Mach-number laminar flow past a NACA 0012 airfoil at a chord
Reynolds number of 104. The incompressible Navier–Stokes equations were solved
to give an approximate description of the near-field flow dynamics and the acoustic
source terms. The far-field sound was computed based on Curle’s acoustic analogy.
The results showed that the quadrupole sound is weak compared with the sound due
to lift and drag dipoles when the Mach number is small.

In order to study sound generated by uniform flow past a cylinder for a range of
Reynolds number from 100 to 5× 106, Cox et al. (1998) solved, for the near field, the
two-/three-dimensional compressible, Reynolds-averaged Navier–Stokes equations by
a finite volume method, which is second-order accurate both in space and time. The
Mach number prescribed was 0.2. The far-field sound was obtained by Lighthill’s
analogy, using the Ffowcs Williams–Hawkings equations. The results showed that
the quadrupolar component of sound is significantly smaller than the dipole. They
also point out that sound computation is highly dependent on the accuracy of the
near-field flow quantities produced by the CFD calculation. Some of the recent work,
falling into the first group, on the sound generation due to flow past a circular cylinder
can be found in Tam & Hardin (1997).
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The second group makes use of a different method, called the acoustic/viscous
splitting method (Hardin & Pope 1994), to study the sound generation by a cylinder
in a uniform flow (Pope 1997; Shen & Sørensen 1999; Slimon, Soteriou & Davis
1999). This method splits the computation into two parts, as in the above-mentioned
hybrid method, but does not use acoustic analogies. Instead, flow quantities are
represented, under the assumption of low Mach number, by an incompressible mean
flow and a perturbation about the mean. First, incompressible viscous equations
for mean flow quantities are solved. Then, using the mean quantities, perturbation
equations are solved. In the near field, the perturbation quantities represent the
difference between the fully compressible flow and the assumed incompressible mean
flow. In the far field, the perturbation quantities are equivalent to acoustic quantities.
Shen & Sørensen (1999) applied this method to the flow past a circular cylinder at
a Reynolds number of 200 and a Mach number of 0.2. The result showed that the
pressure waves propagate from the cylinder along the normal direction of the flow.
The acoustic/viscous splitting method may possibly be an effective and convenient
method of predicting acoustic fields resulting from low-Mach-number, non-compact
source regions (Slimon et al. 1999). So far the results obtained by this method are
qualitative, and detailed descriptions of the acoustic field produced by the cylinder
have not yet been given. Hansen, Long & Morris (2000) proposed a novel method in
which the mean flow may not be restricted to low Mach numbers.

The third group makes use of direct numerical simulations (DNS), where both
the fluid motion and the sound which it generates are directly computed (Colonius,
Lele & Moin 1994, 1997; Mitchell, Lele & Moin 1995, 1999; Inoue & Hattori
1999; Inoue 2000; Inoue, Hattori & Sasaki 2000; Inoue & Takahashi 2000). For
comprehensive reviews, readers are referred to Tam (1995), Lele (1997) and Moin &
Mahesh (1998). In these simulations, the Navier–Stokes equations are solved by using
highly accurate schemes both for space and time in order to precisely capture the
sound pressure, which is usually much smaller than the pressure in the near field. One
of the advantages of DNS over the methods in the first two groups is its capability
in clarifying the generation and propagation processes of the sound in the near and
intermediate fields, without suffering from restrictions such as low Mach number,
high Reynolds number and compactness of the source region. So far most of the
computational work on the sound generation due to flow past a circular cylinder has
been done using the hybrid or acoustic/viscous splitting methods, and the studies
using DNS are very few. This is mainly because DNS requires a large amount of
computer resources.

Our purpose in this paper is to study, using DNS over the entire region from
the near to far fields, the generation and propagation mechanisms of the sound
produced by a two-dimensional circular cylinder in a uniform flow, and to increase
our understanding of the characteristic features of the sound. One of the goals of
this study is to clarify the relation between the vortex/flow dynamics and the sound
pressure waves it generates. The effect of the Mach number is also examined. The
present DNS results are also compared with the prediction based on Curle’s acoustic
analogy, which is widely used in the hybrid method (for example, Wang et al. 1996a;
You et al. 1998; Manoha, Troff & Sagaut 2000).

2. Mathematical formulation and numerical procedure
2.1. Flow model and parameters

A schematic diagram of the flow model is presented in figure 1. A cylinder is fixed
at the origin, and the coordinates parallel and normal to the free stream are denoted
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Figure 1. Schematic diagram of the flow model.

as x and y, respectively. The Mach number, M, of the uniform flow is defined by
M = U∞/c∞. Here, U∞ denotes the velocity of the uniform flow and c∞ denotes the
speed of sound. The lengths are made dimensionless by the diameter D of the cylinder.
The velocity is scaled by c∞. The Reynolds number is defined as Re = U∞D/ν∞, where
ν∞ is the kinematic viscosity. In this study, the Mach number is prescribed to be
M = 0.05 to 0.3. Since the Mach number is relatively low, temperature dependence
of the transport properties is not likely to be a significant effect (Colonius et al.
1997). Therefore, the molecular viscosity and the thermal conductivity are taken to
be constant. The Prandtl number is assumed to be 0.75, and the ratio of specific heats
is 1.4. According to experiments (Cimbala, Nagib & Roshko 1988), cylinder wakes
with Re larger than 160 become irregular and eventually turbulent; two-dimensional
computation may be most meaningful for a flow with Re 6 160. At the same time,
Re must be large enough for vortex shedding to occur, because it is essential for the
sound generation. In this paper, the Reynolds number is fixed to be Re = 150.

2.2. Numerical schemes and computational parameters

The two-dimensional unsteady compressible Navier–Stokes equations are solved by a
finite difference method. For spatial derivatives, a sixth-order-accurate compact Padé
scheme (fourth-order-accurate at the boundaries) proposed by Lele (1992) is adopted.
The fourth-order Runge–Kutta scheme is used for time-integration.

In this study, we adopt an O-grid system with non-uniform meshes. The computa-
tional domain is divided into three regions of different grid spacings: a surface region
[0.5 6 r 6 rsurface ,−π 6 θ 6 π], a sound region [rsurface 6 r 6 rsound,−π 6 θ 6 π], and
a buffer region [rsound 6 r 6 rbuffer ,−π 6 θ 6 π]. The spacing in the surface region is
prescribed to be fine enough to analyse the boundary layer on the cylinder surface. In
the sound region, the spacing is prescribed to be larger than that in the surface region,
but still small enough to capture sound pressure waves. The spacing in the buffer
region is prescribed such that pressure waves damp with increase in distance and
become sufficiently small before reaching the outer boundary of the computational
domain where the non-reflecting boundary conditions are used. The role of the buffer
region is similar to that of the ‘sponge region’ of Colonius et al. (1997). Only the
results obtained in the surface and sound regions are used for analysis. The spacings
among the three regions are connected smoothly by using hyperbolic-tangent curves.
In addition, we imposed a restriction that the increment of the spacing does not
exceed 4% in the surface and sound regions, and 9% in the buffer region. A typi-
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Figure 2. Example of the distribution of grid spacing against r. rsurface = 1, rsound = 100,
rbuffer = 1500.

cal example of the distribution of grid spacing in the surface and sound regions is
presented against r in figure 2, where rsurface = 1.0, rsound = 100 and rbuffer = 1500. The
spacings are ∆rmin = 0.005 adjacent to the cylinder surface, ∆rsound = 0.2 at r = rsound,
and ∆rbuffer = 20.0 at r = rbuffer . The spacing in the θ-direction was prescribed to be
uniform.

Adiabatic and no-slip conditions were adopted on the cylinder surface, and non-
reflecting boundary conditions (Poinsot & Lele 1992) were used at the outer boundary
of the buffer region, r = rbuffer .

After many preliminary tests, the grid spacings and the sizes of the three regions
were determined as follows.

∆rmin = 0.005, ∆rsound = 0.2, ∆rbuffer = 20.0, ∆θ = 0.72◦.

rsurface = 1.0, rsound = 100, rbuffer = 1500.

Grid- and domain-size independence has been established for the solutions presented
in this paper. The total number of grid points is 871 (r-direction) × 503 (θ-direction),
in which 160× 503 grid points are distributed in the buffer region. With this grid
distribution, the number of grid points within the boundary layer for Re = 150 is 16
in the r-direction. (The thickness of the boundary layer was estimated by δ ∼ 1/

√
Re,

and δ ∼ 0.08 for Re = 150.) The time step is ∆t = 0.002.

2.3. Initial conditions

Initial flow fields were given by potential flows except for the boundary layer on
the cylinder surface. For the boundary layer, a tangent-hyperbolic filter was applied
such that both the non-slip condition on the surface and the potential flow condition
at the boundary layer edge are satisfied. At the initial stage of time evolution,
the wake develops symmetrically with respect to the x-axis. In order to achieve
an earlier transition to the asymmetric Kármán vortex street, a Taylor-type vortex
was superimposed on the flow (at x = 2.0, y = 0) at an initial instant (t = 25) as a
perturbation. With increased time, the vortex is convected away to the buffer region
with decreasing strength due to the viscous effect, and then dies out; data acquisition
was set forth sufficiently after the effect of the initial perturbation became negligible
(typically t > 1000).
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Figure 3. Effect of the Mach number on force coefficients. Re = 150. (a) Time-averaged pressure
coefficient Cp, (b) lift coefficient CL and drag coefficient CD: ——, M = 0.1; – – – –, M = 0.2; – · – · –,
M = 0.3.

3. Results and discussion
3.1. Near-field structure and generation of pressure waves

Forces acting on the cylinder are presented in figure 3 for three different Mach
numbers (M = 0.1, 0.2 and 0.3), in terms of the mean pressure coefficient Cp, lift
coefficient CL and drag coefficient CD. In figure 3(b), time variations of CL and CD
are plotted against the reduced time M(t− t1), where t1(M) is the time of a peak
value, because the near-field flow structures may be more adequately described by
the time scale D/U∞ than D/c∞. Figure 3 shows that the coefficients Cp and CL
are not affected significantly by the Mach number, but CD increases with increasing
M. The mean value of CD at M = 0.1 is 1.32, which is equal to the value obtained
computationally by Kwon & Choi (1996) for incompressible flows at Re = 140 and
160 (see also Park, Kwon & Choi 1998). The amplitude of CL is approximately 0.52,
irrespective of M, which is close to the values of Kwon & Choi (1996) where the
amplitude of CL is 0.48 at Re = 140 and 0.55 at Re = 160. The Strouhal number St in
figure 3 is 0.183, irrespective of M, which is close to the experimental values (0.18 at
Re = 150 in Williamson 1989; 0.185 at Re = 155 in Williamson & Prasad 1993), and
fits very well the empirical line, St = 0.2684− 1.0356(Re)−1/2, proposed by Fey, König
& Eckelmann (1998) for the vortex shedding from a circular cylinder. The Strouhal
number in this study is also close to the computational values for incompressible
flows (0.181 at Re = 140 and 0.187 at Re = 160 in Kwon & Choi 1996; 0.185 at
Re = 150 in Inoue & Yamazaki 1999).

Figure 3(b) also shows that the amplitude of CL(∼ 0.52) is much larger than
that of CD(∼ 0.026), suggesting that the intensity of a dipole sound associated with
the drag force is smaller than that associated with the lift force, in agreement with
experiments (for example, Gerrard 1955). Therefore, the Mach number is not expected
to seriously affect the generation mechanism of the sound, as far as the Mach number
range treated in this study is concerned; in the following discussion on the near-field
flow structure and the sound generation, unless otherwise mentioned, we are mainly
concerned with the flow at M = 0.2.

In order to see the near-field flow structure, forces acting on the cylinder and
surface pressure fluctuations are presented in figure 4, and time development of the
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Figure 4. Forces acting on the cylinder and fluctuations of the surface pressure. M = 0.2, Re = 150.
Arrows indicate t = 1930. (a) Lift and drag coefficients: ——–, CD; – – – –, CL. (b) Time-history of
the pressure fluctuation ∆p̃ on the cylinder surface. r = 0.5: ——, θ = 0◦; – – – –, θ = 90◦; – · – · –,
θ = −90◦.

flow field is shown in terms of vorticity in figure 5 and in terms of fluctuation pressure
in figure 6, respectively, for the case of M = 0.2. In this case, the Strouhal number
St calculated from velocity fluctuations in the wake was about 0.183, and the period
of vortex shedding ∆T (≡ St−1M−1) is ∆T ' 27.3. The fluctuation pressure ∆p̃ is
defined by ∆p̃(x, y, t) = ∆p(x, y, t)− ∆pmean(x, y). Here, ∆p denotes the total pressure
which is defined by ∆p = p− p∞, and ∆pmean is the mean pressure; p∞ denotes the
ambient pressure. In figure 4(b), ∆p̃0 denotes ∆p̃ at θ = 0◦, and ∆p̃±90 denotes ∆p̃
at θ = ±90◦. (For the coordinate system (r, θ), see figure 1.) The scale on the left-
hand side is for ∆p̃±90, and that on the right-hand side is for ∆p̃0. As seen from
figure 4, the period of CL is equal to the period of ∆p̃±90; both equal the period
∆T (' 27.3) of vortex shedding. The period of CD is equal to the period of ∆p̃0;
both equal ∆T/2. Positive peaks of CL coincide with positive peaks of ∆p̃−90 and
negative peaks of ∆p̃+90. Similarly, negative peaks of CL coincide with positive peaks
of ∆p̃+90 and negative peaks of ∆p̃−90. Maximum values of CD and ∆p̃0 coincide with
both of the positive and negative peaks of CL. On the other hand, minimum values
of CD and ∆p̃0 appear at vanishing CL. Figure 4(b) also shows that the amplitude
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Figure 5. Time development of a vorticity field. M = 0.2, Re = 150. The contour levels are from
ωmin = −1.0 to ωmax = 1.0 with an increment of 0.02: ——, ω > 0; – – – –, ω < 0. (a) t = 1930,
(b) t = 1945.

of ∆p̃0 is much smaller than that of ∆p̃±90, in agreement with the result shown in
figure 4(a) that the amplitude of CL is much larger than that of CD. As we will see
below, the surface pressure fluctuations propagate radially to form sound pressure
waves.

We can see from figure 4(a) that, during the period t = 1923–1937, CL takes a
positive value with its peak at t = 1930, which is indicated by arrows. The vorticity
field in figure 5 shows that a vortex is shed from the upper side of the cylinder during
this period. Similarly, during the period t = 1937–1951 when CL takes a negative
value with its peak at t = 1944, a vortex is shed from the lower side of the cylinder.
Time development of the fluctuation pressure field in figure 6 shows that pressure
waves are generated from both upper and lower sides of the cylinder in response
to the vortex shedding. For example, as seen from figures 6(a) to 6(d ), during the
period t = 1923–1937 when a vortex is shed from the upper side of the cylinder,
a negative pressure pulse is generated from the upper side of the cylinder and a
positive pressure pulse is generated from the lower side of the cylinder; the pulses
are denoted by the symbols 	 and ⊕, respectively, in figure 6(d ). We can see from
the figures that the pulses propagate radially with time. Similarly, during the period
t = 1937–1951 when a vortex is shed from the lower side of the cylinder, a negative
pressure pulse is generated from the lower side of the cylinder and a positive pressure
pulse is generated from the upper side of the cylinder, as seen from figures 6(d) to
6(g); the pulses are denoted in figure 6(g) by the same symbols as in figure 6(d).
Therefore, alternate vortex shedding from the upper and lower sides of the cylinder
produces positive and negative pressure pulses alternately from both sides of the
cylinder, resulting in the generation of pressure waves on both the upper (y > 0)
and lower (y < 0) planes. Figure 6 shows that both positive and negative pressure
pulses propagate upstream; the propagation angle θp is approximately θp = 78.5◦.
This is due to the Doppler effect, which we will discuss later in more detail in
§ 3.4.2.
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Figure 6. Time development of a fluctuation pressure field, ∆p̃. M = 0.2, Re = 150. The contour
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3.2. Propagation of pressure waves

In contrast to the generation mechanism of the sound in the near field, the nature of
the sound in the intermediate and far fields is affected by the Mach number, as we
will see below. This is mainly due to the Doppler effect.

3.2.1. The effect of the mean pressure

As shown in the previous section, sound pressure waves are generated in response
to vortex shedding, and the generation mechanism of sound pressure waves can be
described by the fluctuation pressure ∆p̃(x, y, t)(≡ ∆p(x, y, t)− ∆pmean(x, y)) which does
not include the effect of the mean pressure. Because ∆pmean(x, y) does not contain
temporal information, the propagation process of the pressure waves is also expected
to be characterized by the fluctuation pressure. However, before proceeding to the
analysis of the propagation mechanism, we should keep in mind the following point
concerning the mean pressure.

A typical example of the three pressures over the entire field is presented in figure 7
for M = 0.2: figure 7(a) shows the total pressure which includes the effect of the
mean pressure, figure 7(b) shows the fluctuation pressure at the same instant as in
figure 7(a), and figure 7(c) shows the mean pressure. In figure 7(a), the symbols
⊕ and 	 denote the positive and negative pressure pulses, respectively, which were
generated during the period t = 1923–1937 and shown in figures 6(d) and 6( f ) by
the same symbols. The total pressure in figure 7(a) seems to suggest that the positive
pressure pulses may propagate upstream whereas the negative pressure pulses may
propagate downstream; the propagation angle is θp ∼ ±50◦ for the positive pulses
and θp ∼ ±120◦ for the negative pulses. On the other hand, the fluctuation pressure
in figure 7(b) seems to suggest that both positive and negative pulses may propagate
upstream; the propagation angle is θp ∼ ±78.5◦. Thus, from these plots, it looks
as if the propagation angles of the total pressure and the fluctuation pressure are
different. Clearly, this is not true because the difference between the total pressure
and the fluctuation pressure is the mean pressure which does not contain temporal
information.

Figure 8 shows radial distributions of the total pressure ∆p (dashed line), the
fluctuation pressure ∆p̃ (solid line) and the mean pressure ∆pmean (chain-dotted line).
These are measured at three different angles: θ = 50◦, 78.5◦ and 120◦. We can see
from figure 8 that the magnitude of the fluctuation pressure is largest at θ = 78.5◦,
but, because of the mean pressure added to the fluctuation pressure, the positive
peaks of the total pressure are largest at θ = 50◦ and the negative peaks are largest
at θ = 120◦. Therefore, in the total pressure field, the pressure waves look as if the
positive parts propagate upstream and the negative parts propagate downstream; in
fact, the pressure waves propagate upstream (due to the Doppler effect), as clearly
shown by the fluctuation pressure. In order to correctly analyse the propagation
process, we should look at the fluctuation pressure.

3.2.2. Decomposition of the sound pressure

The fluctuation pressure ∆p̃(≡ ∆p− ∆pmean) can be expressed generally as

∆p̃(r, θ, t) = A0(r, t)

+A1(r, t) cos(θ) + B1(r, t) sin(θ)

+A2(r, t) cos(2θ) + B2(r, t) sin(2θ)

+ · · · , (3.1)
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where

A0 =
1

2π

∫ 2π

0

∆p̃ dθ,

An =
1

π

∫ 2π

0

∆p̃ cos(nθ) dθ,

Bn =
1

π

∫ 2π

0

∆p̃ sin(nθ) dθ.


(3.2)

The first term (A0) of the right-hand side of (3.1) is called the monopole, the second
and third terms (A1, B1) the dipole, the fourth and fifth terms (A2, B2) the quadrupole.
The coefficients An, Bn are obtained by substituting the present DNS results into
∆p̃ of (3.2). Shown in figure 9 are the coefficients for three different Mach numbers
(M = 0.1, 0.2, and 0.3), which were obtained by substituting into (3.2) the DNS results
measured at r = 75. In the figure, the solid line denotes the fluctuation pressure ∆p̃
obtained by DNS at r = 75, θ = 90◦. The sound generated by a flow past a cylinder
is expected to be dominated by dipoles, especially by the lift dipole (Curle 1955;
Gerrard 1955; Phillips 1956). As seen from figure 9(a), the lift dipole B1 (chain-dotted
line) well-approximates ∆p̃ (solid line), indicating that indeed the lift dipole dominates
the sound field at M = 0.1. However, figures 9(b) and 9(c) show that the deviation of
B1 from ∆p̃ becomes larger with increased M. As the Mach number is increased, the
Doppler effect is expected to play an increasing role, and thus the above deviation of
B1 from ∆p̃ may possibly be due to the Doppler effect.

3.2.3. Doppler effect

In order to examine the Doppler effect acting on the sound field, we introduce a
modified fluctuation pressure ∆p̃M(r′, θ, t) by applying the following transformation
(Appendix A):

∆p̃M(r′, θ, t) =

∞∑
n=0

∆p̃Mn (r′, θ, t), (3.3)
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Figure 9. Amplitudes of wave modes. Measured at r = 75. Re = 150. (a) M = 0.1, (b) M = 0.2,
(c) M = 0.3. ——, ∆p̃ (DNS) at r = 75, θ = 90◦; – – – –, A0 (monopole); – · – · –, B1 (dipole); · · · · · ·,
−A2 (quadrupole).

∆p̃(r, θ, t) =

∞∑
n=0

∆p̃Mn

(
r′

r

)n
, (3.4)

r′ = r/(1−M cos θ), (3.5)

where (1−M cos θ) is called the Doppler factor (Goldstein 1976). By this transfor-
mation, the Doppler effect has been deleted from the fluctuation pressure, and (3.1)
and (3.2) are transformed, respectively, to (3.6) and (3.9) as follows:

∆p̃(r, θ, t) = A′0(r
′, t)

+[A′1(r
′, t) cos(θ) + B′1(r

′, t) sin(θ)]

+[A′2(r
′, t) cos(2θ) + B′2(r

′, t) sin(2θ)]

+ · · · , (3.6)

where

∆p̃M0 = A′0, (3.7)

∆p̃Mn

(
r′

r

)n
= A′n cos(nθ) + B′n sin(nθ), (3.8)

and

A′0 =
1

2π

∫ 2π

0

∆p̃(r, θ, t) dθ,

A′n =

(
r′

r

)n
× 1

π

∫ 2π

0

∆p̃(r, θ, t)

(
r

r′

)n
cos(nθ) dθ,

B′n =

(
r′

r

)n
× 1

π

∫ 2π

0

∆p̃(r, θ, t)

(
r

r′

)n
sin(nθ) dθ.


(3.9)

Shown in figure 10 are the transformed coefficients A′n, B′n obtained from (3.9) for the
same flow conditions as in figure 9. As readily seen from figure 10, the lift dipole (B′1,
chain-dotted line) now almost completely overlaps the DNS fluctuation pressure ∆p̃
(solid line), irrespective of M, indicating that the lift dipole dominates the sound field.
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Figure 10. Modified amplitudes of wave modes in which the Doppler effect has been removed.
Measured at r′ = 75. Re = 150. (a) M = 0.1, (b) M = 0.2, (c) M = 0.3. ——, ∆p̃ (DNS) at
r = r′(1−M cos θ) with r′ = 75, θ = 90◦; – – – –, A′0 (monopole); – · – · –, B′1 (dipole); · · · · · ·, −A′2
(quadrupole).

This result together with that shown in figure 9 clearly demonstrates the importance
of the Doppler effect at finite Mach numbers.

3.2.4. Directivity of the pressure waves

In an experiment on head-on collision of two vortex rings, Minota & Kambe (1986)
obtained a time sequence of the polar diagram of the pressure, and demonstrated the
quadrupolar nature of the generated sound by showing the four-lobe curves. Inoue
et al. (2000) computationally obtained a time sequence of the polar diagram of the
pressure for the same problem which reproduced the four-lobe curves observed by
Minota & Kambe. The same method as that used in Inoue et al. was applied to the
present problem in order to show the directivity of the pressure waves.

As shown in figure 10, the sound field is dominated by the lift dipole; the fluctuation
pressure ∆p̃ is closely approximated by the dipole term ∆p̃M1 (r′/r) in (3.4). Taking this
result into account, we consider the following approximation:

∆p̃M(r′, θ, t) =

(
r

r′

)
∆p̃(r, θ, t) (3.10)

Hereafter, the symbol ∆p̃M denotes the modified fluctuation pressure defined by (3.10),
instead of (3.3) and (3.4). Figure 11 shows polar diagrams of the modified fluctuation
pressure ∆p̃M , defined by (3.10), measured at r′ = 75 for the case of M = 0.2. In each
diagram, the radial length from the origin represents the magnitude of the pressure
on a linear scale with the outermost circle being |∆p̃| = 2× 10−4. The symbols • and ◦
denote positive and negative values of the pressure, respectively. If we assume that the
pressure waves propagate at the speed of sound, it takes about 74.5 non-dimensional
time units for the waves which were generated near the cylinder surface (r = 0.5) to
arrive at r′ = 75. Therefore, the polar diagrams in figure 11 may be considered to
show the directivity of the pressure waves generated by the vortex shedding during
the period t = 1925–1945 (see also figures 4 and 5). Figure 11(b) corresponds to
a maximum CL at t ≈ 1930 in figure 4(a). Similarly, figure 11(d ) corresponds to a
mimimum CL, and figures 11(a) and 11(c) correspond to vanishing CL. From figure 11,
we can readily see that the sound field is dominated by the lift dipole: the profile
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|∆p| = 2 × 10–4

Figure 11. Time variation of a polar diagram of the modified fluctuation pressure, ∆p̃M .
M = 0.2, Re = 150. Measured at r′ = 75. •, ∆p̃M > 0; ©, ∆p̃M < 0. (a) t = 2000, (b) t = 2005,
(c) t = 2015, (d ) t = 2020.

is approximately symmetric and the signs of the pressure are opposite with respect
to lines θ = 0◦ and 180◦. The directivity fluctuates around θ = ±90◦ at the same
frequency as the vortex shedding frequency, because it is affected not only by the lift
dipole but also by the drag dipole which is generated at θ = 0◦.

Shown in figure 12 are the polar plots of the root mean square of the fluctuation
pressures, ∆p̃ (figure 12a) and ∆p̃M (figure 12b). Both figures show the dipolar nature
of the sound field. Note that the root mean square of ∆p̃ in figure 12(a) shows the
directivity at θ ≈ 78.5◦, while that of ∆p̃M in figure 12(b) shows the directivity at
θ ≈ 90◦. This difference is due to the Doppler effect. We will discuss this point later
in more detail in § 3.4.2.

3.2.5. Decay of the sound pressure

Instantaneous distributions of the fluctuation pressure ∆p̃ are presented against
the distance r in figure 13(a) at θ = 90◦. Different lines denote different times. As
seen from figure 13(a), pressure waves propagate radially with time. Owing to the
Doppler effect, the propagation velocity of the waves is dependent on the angle θ
and is described by cθ(θ) = c∞(1−M cos θ); it is equal to the speed of sound c∞ at
θ = 90◦, which can be confirmed in figure 13(a). Figure 13(a) also shows that peak
values of the pressure decay with increasing distance r. Plotted in figure 13(b) are the
peak values of the fluctuation pressure against r at θ = 90◦. As is readily seen from
figure 13(b), the pressure peaks tend to decay in proportion to r−1/2 with increasing
r, in agreement with the theoretical prediction (Landau & Lifshitz 1987).



300 O. Inoue and N. Hatakeyama

(a)

0° 180°

|∆p| = 1 × 10–4

(b)

0° 180°

|∆p| = 1 × 10–4

Figure 12. Polar plots of the root mean square of the fluctuation pressures. M = 0.2, Re = 150.
(a) ∆p̃ at r = r′(1−M cos θ) with r′ = 75, (b) ∆p̃M at r′ = 75.
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Figure 13. Propagation and decay of pressure waves. M = 0.2, Re = 150. θ = 90◦. (a) Propagation
of pressure waves ∆p̃. ——, t = 2000; – – – –, t = 2005; – · – · –, t = 2010. (b) Decay of pressure
peaks. ©, ∆p̃ > 0; �, ∆p̃ < 0; – – – –, ∝ r−1/2.

3.3. Far-field nature of the sound and scaling law

Curle (1955) extended Lighthill’s acoustic analogy (Lighthill 1952) to include the
influence of solid boundaries on the sound field. The two-dimensional form of Curle’s
exact solution may be expressed in a dimensional form as (Appendix B)

c2
∞[ρ(x′, t) − ρ∞] =

∂2

∂x′i∂x′j

∫
V

dy′
∫ t−|x′−y′ |/c∞

−∞
Tij(y

′, t′) dt′

2π
√

(t− t′)2 − |x′ − y′|2/c2∞

− ∂

∂x′i

∮
S

d`(y′)
∫ t−|x′−y′ |/c∞

−∞
fi(y

′, t′) dt′

2π
√

(t− t′)2 − |x′ − y′|2/c2∞
, (3.11)

where

Tij = ρuiuj + δij[(p− p∞)− c2
∞(ρ− ρ∞)]− eij (3.12)

is Lighthill’s stress tensor. The symbol ρ denotes the density, δij the Kronecker delta
and eij the viscous part of the Stokes stress tensor; fi is the force per unit length
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exerted on the fluid by the solid boundaries in the i-direction. Because in Curle’s
analogy the flow in the far field is assumed to be stationary and thus the Doppler
effect is not taken into consideration, the coordinate system is given by x′ or r′,
instead of x or r. The first term of the right-hand side of (3.11) is equivalent to the
sound generated by a volume distribution of quadrupoles. The second term represents
the influence of the solid boundaries and is equivalent to the sound generated by a
surface distribution of dipoles of strength fi. A similar expression to (3.11) can be
seen in Ffowcs Williams (1969), where the second term of the right-hand side is not
included. If we assume that the source region is compact and the flow is isentropic,
p− p∞ = c2∞(ρ− ρ∞), then (3.11) may be reduced to

p(x′, t)− p∞ =
x′ix′j

23/2πc
3/2∞ |x′|5/2

∫ τ

−∞

[
∂2

∂t′2

∫
V

Tij(y
′, t′) dy′

]
dt′√
τ− t′

+
x′i

23/2πc
1/2∞ |x′|3/2

∫ τ

−∞

[
∂

∂t′

∮
S

fi(y
′, t′) d`(y′)

]
dt′√
τ− t′ , (3.13)

where τ = t− |x′|/c∞ is the retarded time. A similar expression to (3.13) can be found
in Howe (1998), where the second term of the right-hand side is not included. It
should be noted here that, in the reduction process from (3.11) to (3.13), the space
derivatives ∂/∂x′i, ∂2/∂x′i∂x′j of the right-hand side of (3.11) were replaced with the

time derivatives ∂/∂t′, ∂2/∂t′2, under the assumption of compact flow; the effect of
mean pressure field is excluded in this process and thus is not included in (3.13).
Therefore, the pressure in the left-hand side of (3.13) should be interpreted as the
fluctuation pressure (∆p̃ ≡ ∆p− ∆pmean), though it is conventionally considered as the
total pressure (∆p ≡ p− p∞ in the present notation).

The two terms of the right-hand side of (3.13) are described by the near-field
quantities under the assumption of a compact source. Therefore, if the lengths are
normalized by D and the velocity by U∞, then Tij and fi are scaled by ρ∞U2∞ and the
time is scaled by D/U∞. In this case, the magnitude of the first term of the right-hand
side of (3.13) is estimated to be (r/D)−1/2(U∞/c∞)7/2ρ∞c2∞, and that of the second term
to be (r/D)−1/2(U∞/c∞)5/2ρ∞c2∞. (The pressure on the left-hand side should not be
scaled by U∞, because it contains the sound pressure which propagates at the speed of
sound.) These estimations lead to the following relation in a non-dimensional form:

∆p̃ ∝ (AM7/2 +M5/2)/r1/2, (3.14)

where A is a constant. At sufficiently low Mach numbers, the first term of (3.14) may
be neglected and the following scaling law may hold on a time scale of D/U∞(≡Mt):

∆p̃ ∝M2.5/r1/2. (3.15)

A similar way of estimation had been used by Kambe & Minota (1983) to obtain the
scaling law, ∆p ∝M4/r, for the sound pressure generated by the head-on collision of
two vortex rings.

In order to confirm the validity of the scaling law (3.15), the computational results
at three different Mach numbers (M = 0.3, 0.2, 0.1) are presented in figure 14(a),
where the normalized sound pressure, ∆p̃/M2.5, is plotted against the reduced time
M(t− t1). The symbol t1 denotes the arrival time of a sound pressure peak at a
measurement point; r = 100, θ = 90◦. As seen from figure 14(a), coincidence of the
curves ∆p̃/M2.5 versus the reduced time M(t− t1) is quite good for the Mach number
range treated in this paper, supporting the validity of the scaling law. Plotted in
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Figure 14. Scaling law. Re = 150. (a) Time-histories of the normalized pressure, ∆p̃/M2.5, measured
at r = 100, θ = 90◦. t1 denotes the arrival time of a pressure peak at the measurement point. – · – · –,
M = 0.3; – – – –, M = 0.2; ——, M = 0.1. (b) Decay of the sound pressure, ∆p̃/M2.5, measured at
θ = 90◦. 4, M = 0.3; ©, M = 0.2; �, M = 0.1.

figure 14(b) is the decay of the pressure peaks, measured at θ = 90◦, at the three
Mach numbers. The figure clearly shows the decay of ∆p̃/M2.5 proportional to r−1/2.

3.4. Comparison with Curle’s solution

The most important results in this section are presented in figures 15 and 16 for
M = 0.2. The left-hand column in figure 15 shows the direct numerical solutions:
figure 15(a) shows the total pressure ∆p, figure 15(b) shows the fluctuation pressure
∆p̃(≡ ∆p− ∆pmean), and figure 15(c) shows the modified fluctuation pressure ∆p̃M

in which the Doppler effect has been removed from ∆p̃. The right-hand column
shows the pressures obtained by Curle’s acoustic analogy: figure 15( f ) shows Curle’s
solution ∆p̃curle in which neither the effect of the mean pressure nor the Doppler effect
are included, figure 15(e) shows Curle’s modified solution ∆p̃Dcurle which contains the
Doppler effect only, and figure 15(d ) shows Curle’s modified solution superimposed
on the mean pressure, ∆p̃Dcurle + ∆pmean. It should be noted that the three pressures of
the left-hand column are quite similar to those of the right-hand column.
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Figure 15. Comparison of pressure distributions between DNS and Curle’s solutions.
M = 0.2, Re = 150, t = 2000. The contour levels are from −0.1M2.5 to 0.1M2.5 with an incre-
ment of 0.0025M2.5. ——, positive pressure; – – – –, negative pressure. (a) ∆p (DNS), (b) ∆p̃ (DNS),
(c) ∆p̃M (DNS), (d ) ∆p̃Dcurle + ∆pmean, (e) ∆p̃Dcurle, ( f ) ∆p̃curle.
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Figure 16. Time-histories of the pressure ∆p̃. M = 0.2, Re = 150, t = 2000. (a) θ = 50◦, (b)
θ = 90◦, (c) θ = 120◦. ——, ∆p̃ (DNS) at r = 100; – – – –, ∆p̃Dcurle at r = 100; – · – · –, ∆p̃curle at
r′ = 100.

Figure 16 shows time histories of the three different pressures: ∆p̃ (DNS, solid line),
∆p̃curle (chain-dotted line), and ∆p̃Dcurle (dashed line). They were measured at three
different angles (θ = 50◦, 90◦, 120◦), with a fixed value of r = 100 for ∆p̃ and ∆p̃Dcurle

and r′ = 100 for ∆p̃curle . Figure 16 shows that Curle’s solution ∆p̃curle differs from the
DNS result in the phase of the pressure waves. Curle’s modified solution ∆p̃Dcurle gives
a very good agreement with the DNS fluctuation pressure.

In the following subsections, we discuss Curle’s acoustic analogy in detail, and try
to clarify what figures 15 and 16 mean.

3.4.1. Curle’s acoustic analogy

As mentioned in the previous section, the magnitude of the second term of (3.14) is
of O(M−1) compared to the first term. At sufficiently low Mach numbers, therefore,
the first term may be neglected and Curle’s solution (3.13) may be rewritten as

∆p̃curle(x
′, t) =

1

23/2πc
1/2∞ r′1/2

∫ τ

−∞
F ′(τ′)√
τ− τ′ dτ′,

r′ = |x′|, τ = t− r′/c∞, F ′(τ′) =
∂

∂τ′

[
x′i
r′
Fi(τ

′)
]
, (3.16)
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Figure 17. Decomposition of the pressure field obtained by Curle’s method, ∆p̃curle. M = 0.2,
Re = 150, t = 2000. (a) ∆p̃curle produced by the drag force, Fx in (3.16), (b) ∆p̃curle produced by the
lift force, Fy in (3.16). The contour levels are from −0.005×M2.5 to 0.005×M2.5 with an increment
of 0.00025×M2.5 for (a), and from −0.05×M2.5 to 0.05×M2.5 with an increment of 0.0025×M2.5

for (b). Solid lines denote positive values, and dashed lines denote negative values.

where Fi =
∮
S
fi(y

′, t) d`. Figure 15( f ) shows an instantaneous pressure field, which
was obtained from Curle’s solution (3.16) by substituting the DNS result into the
source term Fi. The solid lines denote positive values of the pressure, and the dashed
lines denote negative values. As seen from figure 15( f ), the result obtained by Curle’s
solution (3.16) shows that pressure waves propagate at right angles to the flow
direction, indicating the dominant effect of the lift dipole. Presented in figures 17(a)
and 17(b) are the pressure fields produced by the drag and lift forces, respectively.
Superposition of the two fields gives figure 15( f ). Note that the contour levels in
figure 17(a) are much smaller than those in figure 17(b). Figure 17 shows that the
pressure fluctuation propagating at θ = 0◦ is produced by the drag force whereas that
propagating at θ = 90◦ is produced by the lift force, and that the sound field shown in
figure 15( f ) is indeed dominated by the lift dipole. The pressure field in figure 15( f )
is different from the DNS result in figures 15(a) and 15(b) but is quite similar to that
shown in figure 15(c) which presents the modified fluctuation pressure which does
not include the Doppler effect.

Figure 16 shows that Curle’s solutions (chain-dotted lines) differ from the DNS
results (solid lines) in the phase of the pressure waves. This is especially true for
θ = 50◦ and 120◦.

3.4.2. Doppler effect

As already noted in § 3.2, the Doppler effect may play an important role in the
propagation process of sound. Therefore, it is possible that the above-mentioned
differences in figures 15 and 16 between Curle’s solution and the DNS result may be
due to the Doppler effect, at least partly. Based on this speculation, we consider the
following transformation. From a simple consideration (figure 18), we can see that
the propagation speed cθ(θ) of the pressure waves under the Doppler effect may be
expressed by

cθ(θ) = c∞(
√

1−M2 sin2 θ −M cos θ). (3.17)
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At sufficiently small Mach numbers, (3.17) may be reduced to

cθ(θ) = c∞(1−M cos θ). (3.18)

By applying (3.18) (together with (A8) for n = 1 in Appendix A) to Curle’s solution
(3.16), we obtain the following expression for Curle’s solution which contains the
Doppler effect:

∆p̃Dcurle(x, t) =
1

23/2πc
1/2
θ r1/2

∫ τ

−∞
F ′(τ′)√
τ− τ′ dτ′, (3.19)

where the retarded time is now τ = t− r/cθ , and the superscript D denotes Curle’s
solution modified by the transformation (3.18). The resulting pressure field is presented
in figure 15(e). As seen from the figure, both positive and negative pressure pulses
(or pressure waves) now propagate upstream; quite good agreement is obtained with
the fluctuation pressure ∆p̃ shown in figure 15(b). The propagation angle θp of the
pulses (or, more precisely, the propagation angle of pressure peaks) may be estimated
from (3.19) as follows. The position r of a pulse propagating under the Doppler effect
may be written as r = cθ(t− t0) = r90(1−M cos θ), where t− t0 = r90/c∞ and t0 is the
generation time of the pulse and r90 is r at θ = 90◦. Then, the pressure ∆p̃Dpulse at r
may be written as

∆p̃Dpulse =
1

23/2πc
1/2
θ r1/2

∫ τ

−∞
F ′(τ′)√
τ− τ′ dτ′,

=
1

23/2π(1−M cos θ)c
1/2∞ r

1/2
90

∫ τ

−∞
F ′(τ′)√
τ− τ′ dτ′. (3.20)

From (3.20), the dependence of ∆p̃Dpulse on θ may be described by

∆p̃Dpulse(θ) ∝ F ′

1−M cos θ
, (3.21)

where F ′ = F ′x cos θ + F ′y sin θ. As shown in figure 4, the fluctuation in lift is much
larger than that in drag; we may neglect the F ′x term. Therefore, we may assume
that F ′ ∝ sin θ as a first approximation. In this case, from (∂/∂θ)[∆p̃Dpulse] = 0, we can
easily obtain the following relation between θp and M:

cos θp = M or θp = cos−1 M. (3.22)

For M = 0.2, the propagation angle is given by θp = ±78.5◦, which is close to the
propagation angle of the pulses in figures 15(b) and 15(e).

In figure 16, Curle’s modified solution ∆p̃Dcurle is presented by dashed lines. We can
see from figure 16 that the agreement of the phase between the DNS and Curle’s
modified solution is very good. As seen from (3.18), due to the Doppler effect the
propagation speed cθ(θ) is smaller than c∞ in the upstream region (|θ| < 90◦) while it is
larger in the downstream region (90◦ < |θ| < 180◦); it takes more time for the pressure
signals to arrive at the measurement point (r = 100 in figure 16) in the upstream
region than in the downstream region. Therefore, we can see that the phase difference
between ∆p̃curle and ∆p̃ (or ∆p̃Dcurle) in figure 16(a) at θ = 50◦ and in figure 16(c) at
θ = 120◦ is due to the Doppler effect. It should be noticed in figure 16(b), however,
that there is a small phase difference between ∆p̃ and ∆p̃Dcurle at θ = 90◦ where,
according to (3.18), the Doppler effect may be vanishing. (In figure 16(b), ∆p̃Dcurle is
not presented because ∆p̃Dcurle is completely overlapped by ∆p̃curle due to the vanishing
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Figure 18. Relation between the speed of sound c∞ and the propagation speed cθ(θ) of pressure
waves under the Doppler effect.

Doppler effect at θ = 90◦.) The difference is due to the higher-order term, M2 sin2 θ
in (3.17), which is neglected in (3.18). Similar differences between ∆p̃ and ∆p̃Dcurle are
also seen in figures 16(a) and 16(c).

The difference in amplitude observed in figures 15 and 16 between the DNS
fluctuation pressure, ∆p̃, and Curle’s modified solution, ∆p̃Dcurle , may be attributed to
the sound generated by a volume distribution of quadrupoles, i.e. the first term of the
right-hand side of (3.13), which is neglected in Curle’s solution ∆p̃Dcurle .

Finally, by comparing figure 15(d ) with figure 15(a), we can readily see that
agreement of the two figures is very good, except for the wake region where the
Kármán vortex street exists. Thus, we may say that in fact Curle’s solution (3.16), or
its original form (3.13), does not contain the mean pressure, and that by adding it
Curle’s modified solution (3.19) gives a very good approximation to the DNS total
pressure.

3.4.3. Relation between forces and far-field quantities

Curle (1955) predicted that the sound generated by the fluctuating forces at the
solid boundary will have the same frequency as the fluctuating velocity field. In order
to see the relation among the forces, the frequencies of the sound pressure waves and
the velocity fluctuations in the far field, plotted in figure 19 are time-histories of the
total pressure ∆p and the streamwise velocity component u, both taken at the outer
boundary of the sound region, r = 100. The solid line denotes the data at θ = 0◦
and the dashed line denotes the data at θ = 90◦. The Mach number is M = 0.2. In
figure 19(b), the velocity component u is normalized by U∞. Because the pressure
waves propagate at cθ(θ) which is equal to c∞(1−M cos θ), the fluctuations plotted in
figure 19 may be considered to be generated near the cylinder surface during the time
period t = 1900–2000 for θ = 90◦ and t = 1875–1975 for θ = 0◦; the corresponding
CL and CD are shown in figure 4. Figure 19 shows that frequencies of both ∆p and
u measured at θ = 0◦ are the same as the frequency of CD and those measured at
θ = 90◦ are the same as that of CL, in agreement with Curle’s prediction.

Figure 19(b) also shows that the mean velocity u, measured on the outer boundary
of the sound region, is smaller than unity, at θ = 0◦ and larger than unity at θ = 90◦;
the difference from unity is approximately 0.1% at r = 100, θ = 0◦. This result
demonstrates that the effect of the cylinder reaches far upstream. Therefore, we
should be careful if we prescribe u = 1 for an upstream boundary condition of the
velocity component, though this condition has been widely used.
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Figure 19. Pressure and velocity fluctuations measured in the far field. r = 100. M = 0.2,
Re = 150. (a) Total pressure ∆p, (b) streamwise velocity component u. ——, θ = 0◦;
– – – –, θ = 90◦.

3.4.4. Variation with M

The essential features of the results shown in figures 15 to 19 for M = 0.2 and
the related discussion are not affected by the Mach number for the Mach number
range treated in this paper. For example, the variation of the pressure fields with
M is presented in figure 20 for M = 0.1 and 0.3. In the figure, the left-hand column
shows the results for M = 0.1 and the right-hand column for M = 0.3. Figure 20(a)
shows Curle’s solution, ∆p̃curle , figure 20(b) shows Curle’s modified solution, ∆p̃Dcurle ,
and figure 20(c) shows the DNS fluctuation pressure, ∆p̃. By comparing figure 20
with figure 15, we can readily see that the characteristic features are not affected
by M. Figure 20(b) shows that the propagation angle θp of the pulses is well-
approximated by the relation θp = cos−1 M in (3.22): θp = ±84.3◦ for M = 0.1 and
±72.5◦ for M = 0.3.

4. Summary and concluding remarks
The sound generated by a circular cylinder in a flow of Re = 150 has been

investigated by direct solution of the two-dimensional unsteady compressible Navier–
Stokes equations, and the generation and propagation mechanisms of the sound have
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Figure 20. Effect of the Mach number on pressure fields. Re = 150, t = 2000. Left column is for
M = 0.1, and right column is for M = 0.3. (a) Curle’s solution, ∆p̃curle, (b) Curle’s modified solution,
∆p̃Dcurle, (c) DNS result, ∆p̃. The contour levels are the same as in figure 15. In figure 20(b), the
dotted line denotes the propagation angle θp(= cos−1 M).
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been clarified in some detail. The results have shown that sound pressure waves are
generated primarily by vortex shedding from the cylinder surface into its wake. When
a vortex is shed from one side of the cylinder, a negative pressure pulse is generated
on that side whereas a positive pressure pulse is generated on the other side; alternate
vortex shedding from the upper and lower sides of the cylinder produces negative
and positive pulses alternately and thus produces sound pressure waves on both
sides. The generated sound has a dipolar nature: the lift dipole dominates the sound
field. The Doppler effect has been shown to affect the propagation process. It has
been found that the propagation angle of the pressure waves is well-approximated by
θp = cos−1 M. The DNS results have also confirmed the validity of the scaling law
at low Mach numbers, ∆p̃ ∝M2.5/r0.5, which is obtained by an estimation based on
Curle’s acoustic analogy.

The direct solutions were also compared with the solutions based on Curle’s acous-
tic analogy. The results have shown that Curle’s solution well-describes both the
generation and propagation mechanisms of the sound and gives a good approxi-
mation to the DNS result if the Doppler effect is taken into account. Inclusion of
the Doppler effect in Curle’s solution is straightforward; we can simply apply the
transformation r′ = r/(1−M cos θ) or equivalently cθ(θ) = c∞(1−M cos θ). It should
be also mentioned that Curle’s solution does not contain the mean pressure and thus
should be interpreted as giving the fluctuation pressure.

The effect of the Reynolds number on the sound generation is left for future study,
especially in the case when it is high enough that three-dimensionality should be
taken into account.
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Appendix A. Multipole expansions for a uniformly moving source in two
dimensions

The wave equation in a uniform medium at the sound speed c∞ is given by(
1

c2∞

∂2

∂t2
− ∇2

)
p(x, t) =F(x, t). (A 1)

Here F(x, t) is a pressure source and assumed to be acoustically compact around
x = 0. Then the far-field solution is identified as that generated by the superposition
of point multipoles (Howe 1998, § 1.8.3). Both in two and three dimensions, the
distributed source F(x, t) may be replaced with the multipole expansion

∞∑
n=0

Snijk···(t)
∂nδ(x)

∂xi∂xj∂xk · · · , (A 2)

where

Snijk···(t) =
(−1)n

n!

∫
yiyjyk · · ·F(y, t) dy.
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The integral formula (A 1) can be also expanded as

p(x, t) =

∫∫ ∞
−∞
F(y, t′)G(x− y, t− t′) dy dt′ ≈

∞∑
n=0

pn(x, t), (A 3)

where

pn(x, t) =
∂n

∂xi∂xj∂xk · · ·
∫ ∞
−∞
Snijk···(t

′)G(x, t− t′) dt′ (A 4)

and G denotes Green’s function; pn is called a multipole of order 2n (in three
dimensions). In two dimensions, the solution (A 4) is given by the two-dimensional
Green’s function

G(x− y, t− t′) =
H(t− t′ − |x− y|/c∞)

2π
√

(t− t′)2 − |x− y|2/c2∞
, (A 5)

where H is the Heaviside step function.
If the source is moving at a constant velocity U , δ(x) in (A 2) is consistently

replaced with δ(x−U t) by choosing the coordinates (x, t) as the source is located at
the origin x = 0 at t = 0. Let the source-fixed coordinates be defined by r = x− U t
and the corresponding multipole by pDn (r, t). Transforming from the emission time t′
to τ′ by t− t′ − R/c∞ = −τ′ where R = x − U t′ is the emission time coordinate and
R = |R|, the multipole (A 4) is rewritten

pDn (r, t) =
∂n

∂xi∂xj∂xk · · ·
∫ 0

−∞

Snijk···(t− R/c∞ + τ′)
2π
√
τ′2 − 2(R/c∞)τ′

dτ′. (A 6)

Because the integrand is dominated by the neighbourhood of τ′ = 0, τ′2 in the
square root can be neglected, and R may be replaced with r′ = |r′| where r′ =
x − Uτ = r + U (t − τ) is the coordinate at time τ = t− r′/c∞. The differentiation of
τ = t− r′(x, τ)/c∞ gives

∂τ

∂xi
= − r′i

c∞r′(1−M cos θ′)
,

where M = U/c∞, M = |M |, and θ′ is the angle between U and r′. Hence, at
r = |r| → ∞, the multipole (A 6) is approximated by

pDn (r, t) ≈ c
1/2∞

23/2πr′1/2
(−1)nr′ir′jr′k · · ·

cn∞r′n(1−M cos θ)n

∫ 0

−∞

∂nSnijk···(τ+ τ′)
∂τn

dτ′√−τ′ (A 7)

in which the Doppler factor is described in terms of the angle θ between U and

r by using the relation 1−M cos θ′ =
√

1−M2 sin2 θ(
√

1−M2 sin2 θ − M cos θ) ≈
1 −M cos θ. Now the solution pn for the source at rest is obtained by substituting
M = 0 in (A 7). Thus the relation between pDn and pn in two dimensions is expressed
as

pDn (r, t) =
pn(r

′, t)
(1−M cos θ)n

, (A 8)

where

r′ =
r√

1−M2 sin2 θ −M cos θ
≈ r

1−M cos θ
. (A 9)

Note that (A 8) gives the expansion relation (3.4) in § 3.2.3, because pn(r
′, t) corresponds

to ∆p̃Mn (r′, θ, t).
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Howe (1998) gives the Doppler effect on multipole of order 2n in three di-
mensions as the prefactor 1/(1−M cos θ)n+1, rather than 1/(1−M cos θ)n in two
dimensions. This difference is because the delta function, contained in the three-
dimensional Green’s function of (A 1), is the first derivative of the Heaviside func-
tion: δ(t) = dH(t)/dt. In fact, by using the three-dimensional Green’s function
G(x− y, t− t′) = δ(t− t′ − |x− y|/c∞)/(4π|x− y|), the three-dimensional multipole
is obtained from (A 4) as

pDn (r, t) ≈ 1

4πr′
(−1)nr′ir′jr′k · · ·

cn∞r′n(1−M cos θ)n+1

∂nSnijk···(τ)
∂τn

, (A 10)

where τ is the solution of |r +U (t− τ)| = c∞(t− τ), and r′ = r+U (t− τ) and r′ = |r′|.

Appendix B. Curle’s solution in two dimensions
The Lighthill equation (Lighthill 1952) is an exact reformulation of the compressible

Navier–Stokes equation:(
1

c2∞

∂2

∂t2
− ∇2

)
[c2
∞(ρ− ρ∞)] =

∂2Tij

∂xi∂xj
, (B 1)

where

Tij = ρuiuj + p′ij − c2
∞(ρ− ρ∞)δij (B 2)

is Lighthill’s stress tensor, p′ij = (p− p∞)δij − eij and eij denotes the viscous stress
tensor. Now we assume that a fluid fills a region V except for stationary and rigid
enclosed boundaries S = ∂V , and that the fluid is at rest at infinity and at S . Then
the solution becomes (Goldstein 1976, § 3.2)

c2
∞[ρ(x, t)− ρ∞] =

∂2

∂xi∂xj

∫
V

dy

∫ ∞
−∞
Tij(y, t

′)G(x, y, t− t′) dt′

+
∂

∂xi

∫
S

dSj(y)

∫ ∞
−∞
p′ij(y, t

′)G(x, y, t− t′) dt′, (B 3)

where G is Green’s function of the Lighthill equation (B 1) and dS denotes the surface
element directed normally from the fluid region V into the region enclosed by the
boundary S .

By substituting into (B 3) the two-dimensional Green’s function of the Lighthill
equation (B 1),

G(x, y, t− t′) =
H(t− t′ − |x− y|/c∞)

2π
√

(t− t′)2 − |x− y|2/c2∞
, (B 4)

where H is the Heaviside step function, we obtain the two-dimensional form of Curle’s
exact solution as follows:

c2
∞[ρ(x, t)− ρ∞] =

∂2

∂xi∂xj

∫
V

dy

∫ t−|x−y|/c∞

−∞
Tij(y, t

′) dt′

2π
√

(t− t′)2 − |x− y|2/c2∞

− ∂

∂xi

∮
S

d`(y)

∫ t−|x−y|/c∞

−∞
fi(y, t

′) dt′

2π
√

(t− t′)2 − |x− y|2/c2∞
, (B 5)

where fi d`(y) = −p′ij dSj(y) is the force on the fluid in the i-direction exerted by the
segment d` at y on the boundary S . If we assume that the source region is compact,
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then |x− y| in the integrals can be replaced by |x|. By defining the retarded time to
be τ = t− |x|/c∞ and transforming the time-integral variable to t′ = τ′ + τ, the spatial
derivatives may be replaced with the time derivatives as ∂/∂xi = −c−1∞ (xi/|x|)∂/∂τ.
Then, under the assumption of isentropic flow, p− p∞ = c2∞(ρ− ρ∞), (B 5) is reduced
to

p(x, t)− p∞ =
xixj

23/2πc
3/2∞ |x|5/2

∫ 0

−∞

[
∂2

∂τ2

∫
V

Tij(y, τ+ τ′) dy

]
dτ′√−τ′

+
xi

23/2πc
1/2∞ |x|3/2

∫ 0

−∞

[
∂

∂τ

∮
S

fi(y, τ+ τ′) d`(y)

]
dτ′√−τ′ , (B 6)

where the τ′2 terms in the integrands are neglected because the integrals with respect
to τ′ are mainly contributed in the neighbourhood of τ′ = 0. Finally, by replacing
∂/∂τ with ∂/∂τ′ in the square brackets and by using the retransformation τ′ = t′ − τ,
we obtain an expression which is identical to (3.13).
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